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1. INTRODUCTION

Many problems in control system design or economic system modelling
naturally arise in the multiple decision-makers framework. The study of this
type of problems is called game theory. The decision-makers are considered
as players striving to optimize their respective performance indices under
some a priori determined ground rules.

Various types of rules (called strategies) have been developed.
Some have only a single performance index; for example, team problem (players
optimize the same index but possible under different information) [1l], and 2-
person zero-sum game (the performance index is the cost of one player and the
payoff of the other) [2]. Some games have multiple criteria; for example,

" the 2-person nonzero -sum game under the Nash equilibrium concept (the players

optimize their respective performance simultaneously) [ 3}, or under the

Stackelberg equilibrium concept (the leading player optimizes his performance I
index knowing how the passive player will react) [4].
Game theory, though can be considered as a generalization of the
single person, single-criterion control theory, is a great deal more complex.
In particular, for the dynamic Stackelberg Game, even in the seemingly simple
case of linear-quadratic problem, it is extremely difficult to obtain any
analytic solution. Therefore, a modified scheme, the Restricted Stackelberg
Problem (RSP) ([5], [6]), is proposed. This is a Stackelberg game with a

specific information structure which allows the leader to announce his

strategy first but to act only after the follower has acted. By choosing




ii
E 2
!! different representations of a given strategy, the leader can manipulate
E; the follower in various ways. In particular, the leader may be able to force
= the follower to act as if he is also mimimizing the leader's cost. 1In RSP,
!g we also restrict attention only to those Stackelberg solutions which attain
;T the lower bound of the leader's cost (the team cost). The focus of this
gi report is on RSP for a special class of problem, namely, discrete-time,
= finite-horizon, linear-quadratic-gaussian,
& RSP, if solvable, is a powerful modelling tool. It can be readily
& applied to many economic and control problems where the hierarchy of opera-
tion clearly exists or is desired, and it is analytically tractable. 1In
£§ economics, the government - industry - consumers hierarchy can be naturally
Iii posed as a tri-level RSP. The government amnnounces its regulation policy
first, the industry then stipulates a pricing strategy based on the announced f
g? regulation. The consumers act first by making certain amount of purchase from a
- the industry based on the price of the product or service the industry supplies. é
In engineering, any large scale system wherein a single centralized controller g
is impractical can be potentially modelled in the RSP framework with layers of %
decentralized controllers with different priority of operation. ;'*
The investigation in this report is carried out using the dynamic-to- g
, static conversion, which collapses the dynamic evolution of a variable (over S
- .
i finite horizon) into a single vector. A dynamic problem can then be converted >
Eg into the static domain, and the results proven on this domain can be trans- S
a ferred back to the dynamic domain. One feature of this technique is that it ;
bypasses a great deal of algebra to make the qualitative features more E

apparent, which is versatile in establishing the existence of solutions.
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However, in doing so, it sacrifices the recursiveness of the solutions, which

N s

z% r may be a crucial requirement in the implementation of the solutioms.

iﬁ i Three classes of information structures are considered: the deter-
- g{ nministic centralized, the deterministic decentralized, and the stochastic.

i?; . Most of the results are obtained for the deterministic centralized information
;i é; structure. Sufficient conditions for existence of RSP solutions are derived.
w;ﬁ ; Some qualitative aspects of RSP are also examined: the dependence of solva-
E%é e bility of RSP on the specific choice of information and representation, the

PN
s

)
%

stationarity and the convexity conditions, the advantage of linear solutions,

s
L4

?ﬁ . and some interpretation of the given conditions. The decentralized problem
?gé zi% is approached in the same manner as the centralized case. The results are

;j e similar if the initial data distribution is assumed known. The stochastic

ﬁ !! RSP with perfect state information cannot be solved because of the inability
52 ﬁ; of the leader to detect whether the team solution is enforced or mot. To

;( " bypass this difficulty, we include both the state and the follower's control
i LP to leader's information. The problem then becomes similar to the other cases.
éé @S In the situation where the conditions mentioned above are not

;ﬁ & satisfied, the possibility of the leader using a large threat (pemalty to

:E E; follower's deviation from the team trajectory) strategy to achieve his near-
.i ! team cost is considered. It is shown that under certain mild conditioms, the
:ﬁ t; infinite threat can achieve the team cost for the leader. It is, therefore,
: ﬁg reasonable to ask the questions under what conditions can the leader achieve
g% = a cost arbitrarily close to his team cost using large but finite threat? It
;: E% is shown that in general the leader does not possess such a strong

position and the cuse in which it holds is a variety in the parameter space.
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. l‘ This report is structured into four sections. The definitions
and problem formulation are stated in Chapter 2. Chapter 3, the main bulk

= of the work, is devoted to the various cases of RSP. The concluding section,

IR
P

Chapter 4, summarizes the report and points out some future directions.
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2. PROBLEM FORMULATION

2.1. Introduction

By an abuse of language, we shall also let RSP stand for the
equilibrium strategy to be investigated in this report, which is a restricted
version of the Stackelberg equilibrium strategy as briefly discussed in sec-
tion 1. Stackelberg strategy was introduced by von Stackelberg [12] in the
static setting. Generalization to dynamic case was first done in [4]. The
idea is that the commanding player (leader) announces his strategy at each
stage knowing how the follower will react to his strategy. The follower then
optimizes his performance index based on the leader's strategy. This equilib-
rium strategy concept, although very appealing in terms of modelling, is
difficult to solve analytically in general (in the closed loop dynamic case).
The difficulty lies in the fact that the principle of optimality fails to
apply due to the dependence of the closed loop strategy on the length of the
horizon. To circumvent this difficulty a restricted type of Stackelberg
strategy is considered in [5], [6]. This strategy concept, RSP, focuses on
the Stackelberg pair that achieves the team cost for the leader. The leader,
using the non-unique representation of his team strategy, adds on redundant
terms that have values zero on the team trajectory. By choosing the appro-
priate redundancy (or the threat to the follower) the leader may be able to
force the follower to act as if he is also optimizing the leader's performance.

In this chapter, we state the general definitions of Stackelberg,

Team, and Restricted Stackelberg problems. Then we examine some of the past

highlights and show how the present work fits into the lines of development.




p 2.2. Definitions
c- Assume some underlying probability space (‘% F, P) is given.
&3 n n Yy
Let X (0): @~ R, w (k): O~ R, V (&):Q° R , k€lo, 1,--, N-1J,
?3 1 € {1,2} , be random variables with respect to (f, F, P), whose statics
;J are assumed perfectly known.
E: We consider a discrete, time-varying, N-stage dyndmic system
s with uy (k) and v, (k) as input commands and W (k) as noise disturbance
2 into stage k:
Es x(k+1)=f (k, x (k), vy k), W, (k), W (k)) k=0, -~, N-1 (2.1)

At stage k, assume information vectors 2y (k) are given:
2, (k) =2, (k, x (0), ==, x (k), u; (0), ==, u; (k-1),
i u2 0, --, uz (k-1), yi (k)) (2.2)
. Let F, (k) be the Z, (k)-generated J-algebra.

We require t:hat: u (k) € Ui‘ (k), where U, (k) &
l ~ﬂ~ R 1 Y (2 ()14 Fy (k)-measurable}

[ W

IS

. !! The control objective of player i is to find a sequence of
é . admissible controls according to some equilibrium solution concept based
g g on the cost index.
E”‘ u o} Nl 2 g-l k), % (k
- u, (k), ) + 9, (xa¥)) } 2.3)
s as We now define the following equilibrium sclution concepts.
A Definition 2.1
Lo 3 uy (k), u, (k)} 2;3 is a closed loop Stackelberg sequence with player 1 as
2 v ieader, player 2 as follower if it solves

LN O
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Definition 2.2

Min N-1 A i N-1 N-1
uy () € ) Iy ey o tuy Gk, Tuy Gf o) Yo
k=0,1,--,N-1

A , N-1 N-1
where { u, (k, { u, (J )} o 1is

N-1 N-1 N-1
bao) = ar8Min _ 3, (Luy (0 o, wu, (4 )

A
tu, (k, { u (k)
2 1 u, ()€U, % (k)

N-1
Lui k), uzt (k)}k-o is a team solution pair for the leader if it solves

Min 3y (uy (0), ==, Uy (N-1), u, (0), ==, U, (N-1)
u o) €U @ ot 2 2
i=1, 2

k=0, --, N-1

Definition 2.3

Let Z1 (k, u, k), u, (k-1), --, u, (0)) be some information set.

Then, {u1 (Zy (k, wy(k), ==, u, (0)), u, (k)}z;é is the solution of RSP if

it solves
t N-1
, (Ol =aramin 3, (u (2] (0, w, (0) --, ¥ (Z) (N-1),
u, (k) €U, (k)
k=0, --, N-1

{u

u2 (N'l)s == u2 (0))),\12 (0)1 == u2 (N'l))

--u; (0))) Vke{0,1, —-, N-1}

and ult (k) = ul(z (k, uzt(k)su;,(k-l))
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2.3. Problem Formulation

In this report, we consider specifically the discrete, finite-

horizon, linear-quadratic deterministic and stochastic gaussian systems.
The technique employed is the dynamic-static conversion. The time
evolution is collapsed into a single long column vector. The system can then
be viewed as a static entity; however, the relationship between these time-
vectors has to be restricted by causality. Thus, the techniques available
in the static case can be readily applied under the causality constraint.
The system under consideration is described by

X(k+l) = A(k)X(k) + Bl(k) Uy (k) + Bz(k) Uz(k) + W(k) 2.4)

k=0, 1, --, N-1

U1 k), 02 (k) are the controls of players 1l and 2 respectively at stage k.
The cost function of player i is given as: Nel

) ]
3 (g @, wy b = E & @) QM) + 21X (k) Q; (X(K)

+U," (R) Ry (U, ()4, (R (U, (0]}, 1,9=1,2, 1=).  (2.5)

Assume also

> > -
Q ()20 R, @0 4, 5=12

W(k) ~ N (0, E (k)
X, ~N (X, Z)

o

Note that in the usual Nash formulation, R12 need not be positive definite.

It will be shown in Chapter 3 that this is a necessary condition for RSP.
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n o We convert the above dynamic system into the static domuin via the
- following:
ORI
Define
b - r - =
o FX(O) Ui(O) rwgoz
o i ) I et
;- X = ‘ ' u; = ! We=f-deaeo (2.6)
b | X(N) Ui(N-l)! N-1
i - - - L &(N-1,1)W(J)
re j-o
_;:;_ Then the state equation collapses to
] X e ° x0) + £ i3 oy ~~ _° u, +
gi-= i=1) § ~o0 Lo
-..7.' £.. (N ’ 0) ! ﬁ:i--
O &(N-1,0)B, (0)--B, (N-1
R (-1,0)8, (0)--B; ®-1) | Z8 (-1, §)W(3)
.‘:::'Z j=0
o r A 2
= DX(0) + I H U +W 2.7
vl i=1
";.-j: Similarly,
M J, = E[X'Q X+U R, U, +Uj' Ryj uj] (2.8)
S Q, = diag [ Q(0), ==, Q;(N) ]
’-'.’:: ~ Rij = diag [ Rij(o)’ e Rij (N-1)]
Causality is an important property of the functional mappings in this setting.
',': It is characterized in a simple way for matrices, namely, the block lower
3 (= triangularity implies causality.
" o We therefore define the following:
[ - Definition 2.5:
: ﬁ A matrix F = [f“], fij = some matrix with known dimension
T causal if f“ =0 Vy2>q
I @ strictly causal if £49=0 V21
o
<
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The advantage of working in this pseudo-static domain, as stated before,
is the simplicity of algebra and the applicability of static result in a
straight-forward manner. However, same results may also be obtained by

using dynamic programming.

2.4. Past Development in RSP and Team Problem

To study RSP, it is certainly necessary to solve the corresponding
team problem. For centralized, deterministic information structure, the
team problem is the same as the optimal control problem, the solution of
which is of course well known. Unfortunately, in the general decentrali-
zation case, it requires an infinite dimensional filter to generate all
the estimates. Therefore, due to realizability, additional assumptions on
the information have to be made. One type of assumption ([18], [19])
restricts information to that generated by a finite-dimensional, linear
filter, the optimal solution can then be found. Another tyve of assumption
({81, [9], [10]) is the nested information where observations are shared
with one-step delay. This report uses the similar idea as ([18], [19]).
Parameter optimization is used to find the best linear strategies. Due to
the conversion to the static domain, the sufficient conditions are stated
in particularly simple forms.

RSP is formally investigated by Basar [5] and Papavassiloupous [6,7]
under perfect state information. Sufficient conditions are obtained in
each case for the RSP solution to exist. However, some issues are left

mostly unaddressed: the effect of leader's information structure on the

...........

.............
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solvability of RSP, RSP under large threat, possibility of suboptimal RSP

solution should the sufficiency conditions fail, the qualitative interpre-
tation of the conditions etc. The stochastic RSP given the state information
only is in general unsolved and appears unsolvable in the dynamic case. It
is solvable in the static setting, however, as in [13], [14]. 1In this report,
we include the follower's past control in the leader's information structure
and are, therefore, able to solve the problem. We also solve the determi-
nistic decentralized RSP under the linear strategy constraint (to bypass the
difficulty in the general team problem). The centralized deterministic RSP
is also studied, and some of the previously little touched issues are ex-

plored. However, there still exists a great deal of open problems, especially

with regard to the near-optimal solutions in the stochastic RSP.
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3. RESTRICTED STACKELBERG PROBLEM

3.1. Introduction

Dynamic RSP has been studied in [5], [6], in which, conditions
for enforcing the team solution for the leader are obtained under perfect
state information in the deterministic problem. Some results on the
static stochastic RSP are presented in [13], [14]. Here we first examine
the deterministic RSP under various information structures and then the
stochastic RSP under a specific information pattemm.

The RSP is approached as follows:

1. Solve the team problem for the leader under the given information
structure.

2. Choose one representation of leader's team strategy such that it is
dependent on the follower's decision non-trivially.

3. Find conditions this representation must satisfy such that follower's
decision from his own optimization coincides with the team solution.

We shall consider the following information structures:

(Let zi(k) e information available to Ui(k))

Deterministic

a, Zl(k) - [Uz(k)s Uz(k'l)""uz(o), x°]

zz(k) - [X(k), x(k'l):"sxol
b. Zl(k) - [X(k), x(k'l)s"’xol

zz(k) - IX(k), x(k'l)s"’xol

...........

..............




i
whatRta atatats

! c. zl(k) [Uz(k)a Uz(k'l),",UZ(O),X(k),X(k‘l),",xol

F: 22 (k) = [x(k) > X(k'l) B ’XO]
-~ d. Zl(k) - [Yl(k) :Yl(k'l))"sYl(o)]
= - -1) . --

(Yl(') Y2(-) are non-nested.)
Stochastic

- e. Z,(k) = [Uy(k),-=,U,(0),X(k),X(k-1),--,X(0)]

Zy (k) = [X(K),X(k-1),--,X(0)]
B Note:
- l. We have allowed Ul(k) to be dependent on U2(k). This certainly is not

¥

-r
IR

e

physically possible since Ul(k) needs a nonzero amount of time for
computation. However, here we assume that the interval between two

stages is long relative to the delay, thus, we can consider the

strategies Ul(k) and Uz(k) as being implemented at the same stage.

1f precision is needed to include this delay in the model, we can sub-
o divide the interval and let Ul(k) depend on Uz(k-l),--, UZ(O) only.
a In either case, the subsequent results are the same. Care only needs

to be taken to restrict the matrix coefficient mapping U, to U1 to be

- i causal (block lower triangular) in the former case and strictly causal
(strictly block lower triangular) in the latter.

o

Eé 2. Cases (a), (b), (¢) are considered to examine the impact of leader's

information structure on the solvability of RSP. Case (d) in the

general deterministic decentralized information, in which, the team

solution cannot be cbtained in general. Therefore, the best linear
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strategies are derived and RSP is solved based on the assumption that
leader enforces these strategies. In the stochastic RSP with only the
state information, the leader has no way of enforcing his team solution
since the team trajectory depends on the sample path of a gaussian
random process. In (e), we include the follower's past strategies as
well so that the leader can use them for the threat.

The solvability of RSP is also viewed from the asymptotic behavior of

the follower's strategy as a function of the strength of leader's

threat. It is shown that under some mild conditions, if the leader
threatens to play an infinite control for any deviation of the follower's
strategy from the desired value, leader team solution can be enforced.
Since infinite gain is not physically possible, we examine the possibil-
ity of a large, finite threat. 1t is shown, with aid of an example, that
arbitrary closeness to the team cost may not be forced with a linear
representation no matter how large (but finite) the threat is, However,
if discontinuous strategies are allowed for the leader, it can be shown
that arbitrary closeness to the team cost can then be achieved with a

large, finite threat.
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Centralized Deterministic RSP

RSP under information structures (a), (b), (c) is examined in
this section. Non-void conditions are expected to exist in each case
since the expected team values (of states and follower's control) are
known exactly, and an impulsive punishment can be used to threaten the
follower. Suppose finite gain is required for the leader, then the
leader's strategy has to satisfy some conditioms.

We first derive the team solution for the leader. Then with
the general structure on the leader's strategy (only differentiability
is assured), sufficient conditions (first order stationarity and second
order comoxity conditions) are derived for the existence of finite
solutions.

The team solution can be easily obtained using dymamic pro-
gramming, but to stay consistently with the converted scheme, we shall

derive it under the present setting.

3.2.1. Team solution

In this section, we derive the open loop and closed loop team
solution for the leader using the converted system.
Consider (2.7), (2.8) as a static team optimization problem with cost.

‘ ‘
Jl -[(on + Hl Ul + H2 UZ) Q1 (on + Hl Ul + Hz UZ) + U1 Rll U1 +

4
Up Ry, Uyl

(3.1)
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Using the deterministic counterpart of Radner's Theorem [l], set

PV J0 =0 i=1,2 (3.2)
i
where
P = diag [P(0),--,P(N-1)] (3.3)
P(k) = projection onto the space spanned by [X(0),--,X(k)] (3.4)
Then,
v, P, Q B, +R)T HQ (DX +H U]
i i 17 12 i 1 [+] i
-1 .
= -P[R;,  H ' Q X] (3.5)

Note that we have used the assumption R1p > 0, since otherwise impulsive 02t

may result.
We notice that Uit has a non-causal dependence on X. Therefore, we use the
following transformation to obtain a causal representation.

Proposition 3.1

Given U, as

i
- - -1 ¢
Uy PRy B QX
Assume
(1) (1)
I-d 1By O =4 14y By (0
G, = is invertible (3.6)
@) 5 @ 5o
| Bl ) 17 Gy By (0
where

N -1 ‘. ¢ -1
A S U R AR OB R G Qld)jf'M1 @ )+

B, () 8, (1) +B, () 8 U] (3.7)

.......
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(1)
g (1 -1 4
1 - Gj i,i+l A®3) (3.8)
8, &) dj(gil.

Then Ui (k) = g (k) X (k) is a causal version of (3.5).

Proof

See Appendix 1. o Q.E.D.
We write the closed loop solution as

t
U~ = G X (3.9)

where G, is block diagonal with components as calculated in Proposition

i
(3.1).

It is well known that the open loop and closed loop versions of the control

lead to the same state trajectory. For the open loop:

t -1
(I-Hl G1 - H2 GZ)

»
[

DX, (3.10)

t
Ui = Gi X

-1
- Gi (I-Hl G1 - H2 G2) D Xo

[~
o

X (3.11)

Remarks

With state feedback the first order condition should actually be

L) ') ’
(1 'QHR, ) U, +P { (B, Q X, + B U] + ¥, UL QH + R U,

+ Hj Ql('DXO + H:l. U:L)]} =0

‘.
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S !! One solution is the pair (3.5), which is the open loop solution. The only
Q o case non-uniqueness may occur is when V. U,V U = 1. But
NN uy h| u:i i

S

< v =

u Uj Vu U Vx Uj Hi Vx Uj Hj
A
-
D and Ker Hj to
" v ¥
- ui Uj uj Ui I

The closed loop team solution is therefore the same as the open loop
solution in the sense they both achieve the lower bound of leader's cost.
o It is, however, immediately noticed that such advantage is not enjoyed in
o the multicriteria case, e.g., Nash or Stackelberg. In these cases, nested

K information is used to eliminate Vu Uj terms.
i

!! 3.2.2. Conditions for enforcing the team solution

(1) Sufficient conditions

In this section, we derive the sufficient conditions for the

4 !! leader to enforce his team solution using non-uniqueness of representation
? . of his team strategy. The condition will be composed of the first order
f ﬁ? stationarity condition, the second order convexity condition, and the
f? additional assumption that if the leader's strategy is fixed, follower's
: optimization admits his part of the team solution as a globally mimimizing
i; solution. The stationarity and the convexity conditions are investigated
- further for any differentiable representation of leader's team strategy.
52 More specific conditions are then obtained for each case, For linear

representation, it is shown that the convexity condition and the global

minimum condition are always satisfied.
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We choose a representation of U, as
U = Y, (2 U,)) (3.12)

where Y1 (*) is chosen to satisfy

t
(D arg mia 3, (V) (Z) W), V) =0 (3.13)
2

t

@ Y, 2 @) = U (3.14)

We define functions with property (2) as class-T functions. The objective
here is to find sufficient conditions for ¢ under information structures (a),
(b), (c), given Yl (-) a class-T function. The information available to the

leader, Z, (-) is some function dependent on U, in a causal manner. I1f Z
1

2 1
is independent of UZ’ leader will have no way of influencing the follower's
optimization.

We now state the sufficient conditions and the proof:

Theorem 3.2

Assume
d) v (Zl) is a causal, differentiable, class-T function
(ii) J2 44 (Zl), U2) is convex

(111) 2z, > ixo}

(v) & F = VU Y(Zl) l (VU ﬁ total differential with respect to UZ)
2 t 2
U2 U2 (3.15)
s . - -1
)[(R22G2 +H, Q) +F (Ry;6, + Hl Qz)] (I'“lGl'Hzcz) D=0 (3.16)

Then U, = Y(Zl) will force U_ to adopt Uzt.

1 2
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Proof:

1f U1 =Y (Zl) is a class-T functionm, J2 is convex, P [VU J2] | = 0,

2
t
Uy =0
then the global mimimum of J, ¢ (Zl) UZ) is attained with the pair
t )
¢ t, U, ). Therefore, it sufficies to show that 2 [V  J,] | =0
1l 2 zz U2 2
t
U2 = U2

implies condition (iv). (Pz is the projection onto the space spanned

2
by zz.)
We know that knowing X, is sufficient to achieve the lower bound of the
cost function in a deterministic control problem. And since 1x°} and {x}
are equivalentlin the sense that they both achieve the minimum, we can

substitute P (projection as in (3.3), (3.4)) for P, .
2

P [VUz J2] = P [(VUZX) QX + (VUZY) Ry,Y + R22U2] =0 (3.18)

V X=H, +H, V_ Y
u2 2 1 U,

- 4 I '

P [(VUz Y (21)) (Hl sz + Ry Y(Zl)) + H, sz + Rzzuz] =0
Let U, = G,X* , then ¥ (U.) = G.X*
e 2 2 R en Y ( 2 1

It is sufficient then

‘ ‘ ’ t
[y, Yzph' @y, + Ry 6) + @, + R, 6] X = 0

......
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(| : 4

L X = (I-HIG1 - H2G2)

and there is no restriction on Xo.

DX
(o]

: ‘ ’ ‘ -1 '
v L Y @Y7 Q) + Ry16y) + () Q + Ryy6))] (L-H16)-H)G,) ™" D = 0

=
1 Lt -
U,y U2 Q.E.D.
3 X = x°
Discussion:
1. The above theorem holds for the information structures (a), (b), (c).
| However, the solvability differs on each case due to the different

VU 1 (Z,) expressions. Let F be defined as in (3.16).
2

For (a), Z; = {U2 xo}, z, = {xo} :

\7U2 ( (Uy) | =F (3.19)
R t
b: U2 = Uz

x For 0,2, = I} ,2, = w)

= Y@ Y@ X

. 2 2

= VUX-HIVXY(X)VUX+H2

- 2 2

-1
- (I-B.V
(1-8,%, Y (X H,
-l
We need

. i

- - v . -

- Ve (@ | a-a¥ i by =F

o X=x X=X

L: v |

- or (Y Y (X)) (H, + B F) = F (3.20)

: X =x

¢
N.-'c .'~ a7 -'- A\ . -.-- . R e N . L . . R . . X . . . . . . . - X . J
AT WL A S, S S PSR PPV W AP Sl . e PP S U R AL U SN WA JUEANE WL UPULIT TN ChUL i S AP Y
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For (), 2, = W,, X}, z, = x}

Let v(D) denote gradient with respect to ith variable, V denotes the
total gradient.
Then
= (1) \v4 v (2)
VU2x “1 (Vx Y (X, U,) sz + u, Y (X,0,)) + H,

v @

(1) -1
= (I'Hl vx ] (xs Uz)) (Hl Uz

Y (X,Uy) +H,)

v (D )
VUZ Y (XUy)) =Y 0T Y (X,Uy) VU2 Y (X,U,)

= Vx(l) Y (X,U,) (I-H, Vx(l) Y (x,uz))'1

(H]_VUZ(Z) Y (R,0,) + B + Y, @y &,

2
Vx(l) Y (X,0,) I, + HF) + VU,Z(Z) Y (X,0) | =F (3.21)
x = x° | X =x"
u, = u,° U, = U,"

Note that (3.21) reduces to (3.19) or (3.20) if Vx(l) Y (X,Uz) or

VU 2) Y (x,Uz) is set to zero respectively.
2

As a design method, F is first solved from (3.16). Then depending on
the information structure, the appropriate Y (:) can be chosen.

However, the ability to choose ; (°) differs in each case. Given F:

in (a), (¢), V ¢ can always be solved.

............................................................
...................................

..........................




in (b), it is necessary and sufficient Ker (H, + Hy F) € Ker F. (3.22)

Even though, given F, (c) does not seem to offer anything extra in terms
of the solvability of RSP, the additional term in (3.21) does provide
freedom to possibly attain other desirable features (e.g., sensitivity,
convexity, etc. In comparing the three information structures, we con-
clude that (b) is more restrictive than (a) and (¢). (c) offers
additional freedom to fine tune otger features of the solution.

Some of the assumptions in the theorem may seem restrictive, however,

in fact, they are due to reasonable necessity.

Assumption (i) restructs the class of leader's strategies, causality,
and class-T are necessary, differentiability helps to carry out optimi-
zation analytically. 1In general, these are not very stringent since a
large class of functions still remain.

Assumption (ii) states the convexity condition. It is necessary to
guarantee the existence of at least one local relative minimum.
Assumption (iii) restricts the theorem to the perfect state information.
The decentralized case will be treated separately later.

Assumption (iv) is the stationarity condition. The expression in (3.16)
is necessary and sufficient provided F is finite (the infinite gain case
will be discussed later).

Note that VU 1 (Zl) | = constant matrix imposes a strong restriction

X = Xt

t
U= 0
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on non-linear functions, since it implies that all the terms with order

higher than or equal to two will have to vanish on the team trajectory.
Furthermore, it will be shown that convexity condition also becomes very
restrictive for the non-linear functions. Both of these suggest that
linear strategy as the ideal condidate since they are trivially satisfied.
However, for the state information case, it is shown in [21] that, in
certain examples, only non-linear solutions exist. Another property to
notice is that if an F exists in (3.16), it is causal. This 1s certainly
necessary for a linear strategy.

Stationarity and Convexity:

In this section, we examine the stationarity and the convexity conditions
((i1), (iv) respectively in more detail. The stationarity condition is
expressed in geometric language. The sufficient condition for convexity
is derived.

Stationarity:

In (3.16), we have Eﬁﬂ%ll (uﬁ’xnb) unknowns (due to the causal structure

of F), and N (nxnz) equations. Assume that all equations are independent.

Then we require N 2 %s -1. If equality holds, the solution F is unique.

If strict inequality holds, there are, in general, infinitely many
solutions, The advantage of this freedom and the ways of utilizing it
requires further study. If inequality fails, we then have to solve F as

a function of X , in which case, N E'Q- -1 always holds.
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!. In the case of state information (information structure (b)), we

have the additional equation (3.20) to solve. Observe that in the case of

N
«

linear strategy, Vx(y(x)),a constant matrix must have the last n columns

- equal to zero due to causality restriction. Therefore, for (3.20), the last
m2 columns of F (lem2 elements) must also be zero. We have then
N(N+1) _ - N(N-1
7 BTy~ Nmym, 7 T

unknowns and Nmn2 equations. Thus, we need N2 %+ 1l in general, i.e. if all
1
equations are independent. Putting together the above constraint and (3.16),

(A3

(i)
we have:

? Proposition 3.3

' The equation (3.16) has a solution F if

'y ' N - o -1 ] A _ _ -
(1) ker(R21G1+H1Q2) Im(1 HlGl H2G2) DC ker(R22G2+H2Q2) Im(I H1G1 HZGZ) lD

" (3.23)

W
h - ] o - -1 \J - - '1
(i1) rank(R21Gl+HlQ2)(I HIGl H2G2) D2 rank(R22G2+H2Q2)(I HlG1 H2G2) D
! " (3.24)
p (111) N2 2n _ 1.
. m
. 1
{ - Proof: Write (3.16) as
| A = -F'B.
o It is necessary and sufficient that
<
.- ImA = InF'B
and ker A = ker F'B.
r
[ The first condition and one direction of the second condition (ker ACker F'B)

is taken care of by choosing F appropriately and condition (ii).
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We know this is possible because Nz;-%g -1 implies number of unknowns is
1
greater than the number of constraints.

Now we need ker ACker F'B. Since F is free to be chosen, we
only need to require ker ACker B. Substitute for A and B with respective
expressions, the result follows. Q.E.D.
Condition (i) means that for all possible team trajectories, xt,

t t t,.t t t t ! t
u1R21u14-u1H1Q2x 0, u2R22u24-u§H2Q2x = (0. This 1s certainly necessary since

t t t,.? t t ' t t
if ulR21u1+u1H1Q2x 0 and R22u2+H2Q2x =¢# 0, then u,

solution for the follower, while u;=-P[R;;(HéQ2xt-s)] is. Condition (ii) simp

simply requires the number of unknowns to be greater than the number of

is not the optimal

equations.
-~ Convexity

Recall that U2 is defined as the set of all functioms, Uys measurable
with respect to the c-algebra generated by the information structure. U2

is certainly convex since if u We have

él) u§2) € UZ’ augl) + (l-a)uéz) € U2 .

assumed the differentiability of y(zl), therefore, Jz(y(zl),uz) is convex
2
over U2 if and only if VuzJZ(Y(zl),uz)z 0

VuZJZ(Y(zl),uz) = [(Vuzv(zl)) (R21v(zl)+HiQZX)+R22u2+H2QZXI

2 '
v“z JZ(Y(zl),uz) =Ry, + (Hlvuzv(z1)+H2) QZ(HIVuzv(zl) +H2)

1 2 '
+3 [(Vuzv(zl)) (R21v(zl) + Hlex) + (R21v(zl)

+H70,%) 'Vizy(zl) 1. (3.25)

Since R22, Q2, R21 are all positive definite or positive semi-definite, we

only need

--------
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2 ' v 1,2
" (7, ¥ (2D Ry ¥ () + H1Qp) + (Ryv(2p) +B10,0) (7, v(2)) 20

¥x and y(zl) generated by u, € U2. (3.26)

1f Vi y(zl)#(), the above condition is very difficult to be satisfied. The

- 2

- reason is that if we consider Vi Y(zl) evaluated at a particular u,, we only
2

. ' 2

ﬁ} need (RZly(zl)-l-HlexHu2 to have the opposite sign of Vqu(zl) in one of its

orthogonal coordinates. This immediately suggests the desirability of the

linear strategy, since Vi Y(z1)==0 in that case
2
(iii) Linear Strategies

ti From the discussion in the previous sections, we see that the non-
linear representation of leader's strategy does not offer any advantage; in
fact, considerable care needs to be taken for convexity. Therefore, we now
i. specialize our attention to linear representation only.

Proposition 3.4

Py

Assume

(1) Y(zl) is a causal, differentiable, class-T function

Lkl
(¥

(11) 2,2 {xo}

' .
¢

(ii1) dF>

)+ F'(R,.G +H!

[(Ry G, 21611,

' o Q
2 Q,) 1 (DHH G +H,6,) = 0. (3.27)

2
RN |

(1ii)' 1If z = {x}, z

1 = {x}, assume IKD

2

r_b"_. e
a2 »

(K +Gl) (H2+H1F) = F. (3.28)

i (14" If z = (x,up}, 2, = (x}, assume 3K>

(Gl-KGZ)(HZ'I-HlF) +K =F, (3.29)
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Then,
o o
for z, = {uz}, z, = {x}, uy F(uz-G2x°)+-Glxo, (3.30)
for 2z, = {x}, z, = {x}, u, = K(x—xt(xo))+-Glx; (3.31)
for z, = {uz,x}, z, = {x}, u, = K(uz-sz)i-Glx; (3.32)

will force u, to adopt u;, respectively.

Proof: Substitute the expression of ul(-) into Theorem 3.2, the result then
follows. Q.E.D.
Note that the convexity condition vanishes due to the fact

Vizul(zl)==0. The conditions are easy to verify since they only involve

linear equations. The gain matrices are all causal (if they exist), therefore,

the solution is also realizable (causality is ensured VG G2 in diagonal

1’

or noncausal representation).

3.2.3. Examples

We shall examine some simple scalar, 2-stage examples. Team and
RSP under information structures (a),(b) are solved using the technique
derived before. The RSP solutions are verified by substituting them back

into J, and solve for the optimal u The effect of weighting matrix

2 2°
coefficients on the solvability and the implication of different information
structures ((a) vs. (b)) are clearly illustrated.

Consider a scalar, 2-stage system

x(2) = 2x(1) +u1(1) +u2(1)

x(1) = x(0) +u, (0) - u,(0)
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3, - 2x2(2) + x2(1) + %2 (0) + Zui(l) + u]2_(0) + u§(1) + ug(O)

3, x2(2) + x2 (1) + 2x%(0) +aui(0) +bui(l) +cu§(0) +du§(l).

Apply static-conversion

x(0) 1 0 0] u, (0) 0 0][u,(0)
x={x(D){={1]|x(0)+ |1 0 +| -1 0
x(2) 2 2 1w @ =2 1{| uy(D)
1 0 0] "1 0] '
J.=x'"]0 1 0ix+u u. + u.u
1 0 0 2 o 2|t 22
2 0 0] fa o e o
J,=x']0 1 O}lx+u u, +u u
2 00 1 o bt %o 4 2
Team

[0 1 4]
ER PR

(0 -1 -4]
u2 = - -0 0 2- X.

Using Proposition 3.1, we transform them to the causal representation

[_3/7 o0 o
u = X
1 1
. 0 -2 0
37 0 0
u = X.
2 lo -1 o

The team trajectory is
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' ,. and the open loop control law is
[ - -
: : o -3/7
;T G, =
l -1/7
! - -
b [
o - -
2 3/7
o
3 ?;:: G2 = .
s _-1/7_
-, RSP
iz We now assume linear strategy and apply Proposition 3.4.
e - Information structure (a)
- |
Let
- - ) )
N u, F(uz-szo) + Glxo'
.' F satisfies
” e L ' o/ oy _
[F'(H,Q,+R,,G,) + (H,Q, +R,,G,) ] (D+H,G,+H,G,) = 0
‘c:j
fl 0
Restrict F to the causal structure F = Substitute in numerical
g £ 5
) values, we obtain
- (4-6a)f) + (1-b)f, = 4=6c
f{f 2d-1
3 31 -
CE We notice immediately that F is nonunique (3 variables and 2 equations),
however, given a,b,c,d, f3 is unique. This points out the possibility
rea
c.. that given the weighting parameters, we can tune F to achieve better per-
b formance in, say, parameter sensitivity; or, given the desired F, we can tune
the parameters. We can also check that Nz:—:- 1 (2>1). Therefore, provided
“4 equations are all independent, we should have 1 (2-1) degree of freedom).
F’
"y 'ﬂ"”l".-‘;n."p."‘.’"0"'.-.‘..—'-\—‘.1'.-l-./-..“‘ ‘, 'v ‘_ .. ’.- .". ' ".,‘- ,-- -'. ....... \" -...-- et e T -".--' "‘_ . .-.- ° .
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For some values of a,b,c,d, F may not exist at all (this points to

the importance of suboptimal strategy) even in this simple example, e.g.,

b=1, a=

To verify that the stated strategy does enforce team, we substitute in some

numerical values for (a,b,c,d) and solve for the optimal u

2
- a=c=d=1 b=0 F = [é (1)] set f2=0 arbitrarily
6 (diagonal structure)
ul(O) = uz(O) -3 x(0)
1
ul(l) = uz(l) +14 x(0).
3.]’2 BJZ
Substitute in J2 and set 3u2(0) = auz(l) = 0, we obtain
u, (0) = 3 x(0)
2 7
- - x(0)
u () = -75

as expected.

- asb=0 (RZl-O, i.e., u, is not penalized directly in Jz)
c=d=1.

Set fZ-O arbitrarily

1

-3 0
F=

0 1

u, (0)

2~ _3

u 0 = - == -7 *O®

- x(0)
ul(l) “2(1) + 55

Substitute in J2 and carry out the minimization. We obtain

u,(0) = %-x(O)

- - x(0)
uy (1) 7

-g-, c#%. However, we are able to say F exists generically.




l! as expected. In the second case, even though uy does not enter JZ directly,
it does affect J2 through x.
- Information structure (b)

- Now we examine RSP when only the values of the state variables are available

to the leader. We shall see that the solvability becomes very stringent.

(For generic solvability weneed N2> %ri"" 1, N=2, ;251]%+ 1=3, thus the example

here is in fact generically unsolvable.)

X Consider now the representation
- = RK(x-(D+H, G5 +H,6)x(0)) +G.x
o Y4 X 1’1 7272 1

- where K solves

(K+ Gl) (H2 + HlF) = F.

ll F is the same as in the last section. Let
- k, 0 0
_t' K= 1

k2 k3 0
i k bi f.=£,=0
o 1 = arbitrary f,=f,
. k2 = arbitrary
. .1

ky = 5 f2.

-l k,,k, do not enter into the solution, since u, cannot deduce any information of

1’72 1

u, from x(0), the dependence of x(0) has not consequence to the solution.

The same reasoning tells us that a penalty on ul(O) will also have no effect
on the solution.
Note that given (a,b,c,d) f3 is determined uniquely. Therefore,
[1 f3=0 is a strict requirement on the problem (if d#%, the problem has no

L solution). This coincides with the statement before that since Nié—:+ 1, the i
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problem is generically unsolvable. Here we proceed with the assumption d=r%
in order to verify that the strategy does indeed enforce the team solution.

- Let c=1, b=0, then f2=-2

0
2
2

o, (1) = % x(0) - 2u, (0)
u,(0) = 3 x(0)

u, (1) = - 3 x(0).

b=0, then £,=1

- Let ¢== 2

u (1) = - x0) 4 (0)
u,(0) = % x(0)

uy (1) = - %x(O).

3.3. Behavior of Leader's Cost Under Large Threat

A natural question to pose after obtaining the results of the
previous section is what can be done when there exists no solution to the
set of conditions stated. It will be seen in this section that under certain
mild conditions, infinite threat from the leader (i.e., leader threatens
to drive the follower's cost to infinity if the follower does not perform

as desired) can achieve the team solution for the leader. It therefore seems

............
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promising that perhaps near-team cost can be attained by using a very large
but finite threat when the previously stated conditions are not satisfied.
However, this expectation will be shown to be false in general if the leader's

representation is continuous in u No matter how large (but finite) the

2.
leader wants to penalize the follower's deviation, he cannot achieve arbitrary

closeness to his team cost.

3.3.1. Solvability of RSP Under Infinite Threat

We shall be concerned with linear representation of the leader's
strategy only. We study the solvability of RSP when the threat in the leader's
strategy is weighted by a gain that tends to infinity. It is shown that under
some mild conditions RSP is solved.

Without loss of generality (in the class of deterministic,
centralized information structures), we assume information structure (a).

Assume we adopt the representation (3.30) for the leader's strategy

(o] o
ul(uz) F(uz-G2x0)4-Glxo,
and assume the optimal strategy of the follower, given that the leader has

announced his strategy, is

* o ~°
uy szo-FAGxo, (3.33)
where (G X G; o) is the team solution pair. ¥From (3.18),
] ] =
plF (H1Q2x+R21 1)+H Q x+R,,u 2] 0 (3.34)

*y o
ul(uz) FAGxo-l-Glxo (3.35)

P L AT T A . . . o R B A L . S
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- *
X on + Hlu1 (uz) + quz
o o
= on + chlxo + Hszxo + HlFAGxo + HZAGxo
o o
(D+H1G1+H2G2)xo+ (H1F+H2)AGxo (3.36)
= x° + ax. (3.37)
Note that
S o _ t . .
t T Gixo Gix (by the definition of Gi)' (3.38)
2
Ton Rewrite (3.33), (3.35) using (3.38) and substitute together with (3.37) into
! & (3.34)
- PL(F' (H]Qy*R, 6, ) +HJQ +R,,G,)x" + F' (HIQ,Ax+R, FAGK )
) , u
. + HZQZAx+ R22AGxO] 0
or
o 2ty ' o o 2 1)
\ :f: {[F (H1Q2+R21G1)+-H2Q2+R22G2)(D+-H1G1+H2G2)]4-[F (Hle(HlF+H2)4-R21F)
! =
- + H2Q2 (H1F+H2) + R22]AG}x° 0 on .
Since xo can be any vector in Rp, we have
' pur ' o o ' '
{[(F (H1Q2+R21G1)+H2Q2+R22G2)(D+H1G1+H2G2)]+[R22+H2Q2H2+F HIQZHIF
v ' "y ' -
+F R21F+F H1Q232+H2Q]H1F]AG} 0 (3.39)
“- - ~ ' 1o e ' -1 ty!
- G [(R,,*13Q,H,)+F (H1Q2H1+R21)F+F H)Q H, +H,Q.H, F] “[(F'(H,Q,
' o o
+R21G1) + H2Q2+R22G2) (D+H1G1+HZG2) ]. (3.40)
If F satisfies (3.27), then AG=0, and the leader's team solution is enforced.
l~ If there exists no F satisfying (3.27), the team solution is still attainable

by the following.
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Proposition 3.5
If F-0 =0 YF
F+»»
\j
and (H1Q2H1+R21)

is nonsingular, then the representation of the leader's strategy as in (3.30)

will force the follower to adopt the corresponding team strategy.
m, xm
Proof: Let F-+=, then along any direction in the R 1 space the denomi-

nator is of O(HFHZ) and the numerator is of O(IF1). Therefore, AG—+0

componentwise, AG=0 implies the leader's team solution is enforced. Q.E.D.

The above result is theoretically useful since it says that RSP
is always solvable for this information structure provided that infinite gain
is possible. However, the infinite threat is not physically realizable,
therefore, it is natural to ask whether the team cost can be approached

arbitrarily close given a finite gain that is large enough.

3.3.2. Effect of Finiteness of Threat

It is shown in this section that if we consider F not identically
equal to infinity, the largeness of F will not enable the leader to approach
team cost arbitrarily. A key assumption in Proposition 3.5 is that F.0=0,
which means that even though F is an infinite threat, if the follower plays
team exactly, the threat will have no effect. However, for the case F being
finite (no matter how large), the follower's decision cannot be made exactly
team (first order condition in Section 3.2 is assumed not satisfied). The
deviation can be shown -0(IFI-1), which is then amplified by F. Therefore,

there will be a sizable deviation in the leader's cost.
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We first examine the effect of control offsets to the leader's

cost

= G x <+ FAGx
o

u]. o
(3.40)
= G

NO =0

x + AGx .
o

/) o

Then

X = AX +H1Glx +H2G2x +H1FAGx +H2AGx

t
X + (H1F+H2)AGxo (3.41)

P - , t t , t
Jl(ul,u (x +Ax) Ql(x +Ax) + (ul+Aul) Rll(u1+Au1)

2)
+ (uS+au,) 'R, . (ut+Au,)
278Ug) Ry, (uytlu,

t
Jy+a3; (3.42)

= 1 t U
AJl xo(AG [(H1F+H2) Ql(D+H1G1+H ¢%) +F' Rl1 1+R12G2]

+ [(D+H1G +H G ) Ql(H F+H )+G 'R, F+ GO RlZ]AG

1 111 2

L A L]
+ AG [(H1F+H2) Ql(H1F+H2) +F'R,.F+ RIZ]AG)xo. (3.43)

11

If the leader's cost is continuous with respect to |Fl, letting F+= in

(3.43) should imply AJ1->0. However, we will see that in general it is

not true by deriving 1lim AJ

A°F+°°, we retain the dominant terms
I Fl e

1
only

AG~ —(F' (H! 20 “lpv(w

1Q2H1 (3.44)

1%+ Ry 6))
-~ ot ' o ' o
83} ~ AG'F'((H]Q H,+R )G +HIQ, (DHI,G3)

-1 ' '
(HlQl 1+R11)F(F (HIQZH +R21)F) F (H1Q2+R2101)) (3.45)

where ker F=0 has been assumed (generically true if mlz mz) .




Since ker F=0 orthogonal matrices U,V

W e e R N T T T T . IR R A A S . e AR A el M UL MR- Jadie ot b M s e
LTV SR VL P D TR S R I8 ;‘.'- e T T e s e T L T e T T e e e T e LT e e o

N F
i F=u| |V (3.46)
2] i 0
-
:i:.' F
U'FV' =
o 0
. .
L where F is nonsingular. Then, let R H1Q1H1+R21> 0,
- ) ) Fl
- F(F'RP) 1P = F(VIF ofu'ru| | W Er.
W 0
ﬁ L& Let
: R Ry
s U'RU = (1U'RUN = RI) (3.47)
NN R} R
. 2 73
! ' F(F'RF) 1F = Fv'(f'nlf')'lvr'
: - U(U'Fv')i'ln'l'li"l(vr'u)u'
- u[F] FlE L 0w
0 1
O - URIlU' (3.48)
o -1
= et o H! ' ' ' 1
A AG'F H)Q,+Ry,G,) "F(F' (H]Q,H, + R, )F) "F'.
% As Foo
R 5 (R 120t S ¢
:;.5 AG'F' > (H1Q2+R21G1) URl]‘U as derived before (3.49)
= AJ, +=(H!Q, +R..G,) "UR. 1U" [ (H!Q,H.+R, )G +H!Q, (DHL.C®)
, 1 1727 M2171 1 1°1717711°7°1 7 11 272
' - U Tty
(ulqlul+au)tmllu (H]Q,+R, 6,)] (3.50)
C which in general is nonzero, thus proving the asserted result,
L.
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It is certainly of importance to investigate in the case of finite
threat and failure of the first order condition whether there exists a near
optimal strategy for the leader. One method is to assume one representation
(selected from the linear class) and perform parameter optimization. A
possible conjecture is that the minimum solution F in (3.27) will correspond
to the nearest optimal solution. However, a verification of this conjecture

is not yet available.

Note that from (3.50), AJl will in fact tend to zero on a variety
of the parameter space. Since we are only interested in this result when
conditions like (3.27) fial, in some cases it may happen that this variety
will have high probability of occurrence on the subset of the parameter space
where (3.27) fails. However, it appears ''generically" that AJl tends to a
nonzero limit for Stackelberg strategy with very large threat.

It should be noted also that the conclusion drawn here is for uy
as a continuous function of u,. If u, is allowed to be discontinuous, AJ1

2 1
will in fact be zero for finite threats that are large enough.

3.3.3. Examples

We use the example in Section 3.2.3 to illustrate the effect of
infinite and finite threats. It is shown that if each component of the
threat tends to infinity at equal rate when the leader announces his strategy,
then the team solution is indeed enforced. However, if the threat
coefficients tend to infinity (at equal rate) in the leader's cost, the

limiting cost is shown to be higher than the team cost.

From Secion 3.2.3, we have the following representation for ul(O)

and ul(l)
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ul(O) £ (u (0)-3x )-%

(1) = f (u (0)-=x ) + f3(u2(1)+% xo) -i]'z X

f.,f, are coefficients in the threat matrix. Then,

where fl, 904

x(l)-—x + £ (u (0) - x)—u(O)

x(2) = 12x+2f(u(0) 3 x ) +£,(u,(0) - x)+f(u(1)+ x)

= 2u,(0) +u,(1).

Let
3
u2(0) 7%, t Agoxo
u, (1) =—-l'-x + Ag.x
2 7 1%°
Then

3
u, (0) = (£,88 - P)x,

ul(l) (f Ag + £

1.
388 " 1%
When fl,fz,f3 all tend to +» at equal rate, asymptotically

2(14b) £, £,-(1+3b- 3a-3ab)f 1f3
Ag"‘ 2-»0
° 14[(1+b)f3((5+a)f1+(1+b)f2+4f1 2)-f3(2f1+(1+b)f2) ]

2 2
-2((1+b)f2+2f1)(1+b)f2-2(2-3a)f1)+(b-1)((5+a)f1+(1+b)f2+lsflf2

Ag. ~ =
1 14[(1+b)f3((5+a)fi+(1+b)f§+6f1f2)-f3(2f1+(1+b)fz)2]

Thus, when flsfz-f3- 4o

Ago = Agl = (
and the team solution is enforced by the leader.

If we retain fl,f2 f3 and substitute the expressions into Jl’ we

get

............

-+ 0.
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t
Jl = J1+AJ1

where J; is the team cost and AJl is the deviation due to Ago and Agl.

As fl,fz,f3->w at equal rate,

2 2., 2
AJ) ~ (L0£1+BE £, +4€7)Ag + 4f

2,2

3A81 + (8f2f3+8f1f3) AgoAgl .

From the above, we know Ago,Agl~0(-£-1I) . But the quadrat::[.c-fi coefficients

make each term tending to a finite limit. If

limfi/f =] vi,je{1,2,3}
£, 3

f:I.

b

I P
x(1) (7+ (fl 1)Ag0)xo
1
x(2) (14- 2Ag°+Agl+ ZfIAgo+§2Ag°+ f3Agl)xo.

Substitution of these expressions into J2 and minimization with respect to

u2(0) and u2(1) render

(6c-4)+(4-6a) £~ (1+b) £
14

2

+ ((5+a)fi+ ((1+b)f§+4f £,-10f ~4F, + 5+ ) bg_

1 1 2

+ (2f1f3+ (l+b)f2f3-2f3+ 2f1+ f2-2)Ag1 = 0
and
(1-b)f3+(1-2d)

14

+ ((1+b) f2f3+ 2flf3+ 2f1+ f2-2f3-2)Ag°

2
+((1+b)f3+ 2f3+(l+d))Agl 0.

When fl,fz,f3 are chosen to satisfy the sufficiency conditions derived in

Section 3.3.2, namely,

(6c-4) + (4-6a)f1-(1+b)f2 =0

(l-b)f3+ (1-2d) = 0,
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then Ago = Agl =0

and the team solution is enforced

lin a3, = 1 > [22 (4b+6a+6ab) > + 4 (8-b>-37a~3b+ab)
fi*m (1+a+5b+ab)

+15(8-b2-37a-3b+ab) (4b+ba+6ab) ] .

Thus, we conclude that the team cost cannot be approached arbitrarily close
with large threats.
It has been mentioned in the previous section that we should

examine the continuity of J, only for the cases the sufficiency conditions

1
in Section 3.2 fail. In this example, they occur at a-% or b=1, For b=1

a3, » —L— [35202432) 2 + 64(1-9a) 2 + 256(1-9a) (1+3a) ] .

1 (6+2a)
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3.4 Decentralized and Stochastic RSP

3.4.1. Introduction

3;
; " The cases we shall examine here are the deterministic decentralized
'!! and stochastic state feedback information structures. Due to the difficulty

-
.
At

i of the general decentralized team problem (as will be explained later), the

- e g N

!i'-'."

team problem is solved under the restriction of linear strategies. Sufficient
conditions similar to those obtained in section 3.2 can then be stated, but,
as to be expected, they become slightly more stringent. In the stochastic

case, the problem is not solved in general; it is only after some further

restrictions are imposed on the information structure that non-void conditions 3

Al
. bt

b
)
Ve
2y

for RSP can be obtained.
Ty Intuitively, RSP can be solved in two ways. One is to use the
infinite threat concept discussed in section 3.3. The other is to alter the

;: follower's objective function so that the optimal follower strategy coincides

SRR T T AR L

with the team strategy. The former method meets with difficulties in both

T

‘

decentralized and noisy state information cases. In the first case, the leader

s

can only enforce the team trajectory projected onto his observation space,

P L RLNE "

——
EART 0,
a

P2
»

which in general does not imply that his team cost is attained., In the second

case, the leader is unable to implement the threat term (that vanishes upon the

.,.
RS |
i TR W

enforcement of the team solution) due to the random nature of the state trajec-

L ad
e

tory. The latter method, however, can be applied to the deterministic decen-

tralized RSP provided linear representations of the strategies are constrained.

.
e

TV ED Py ¢ M7 VP

Ce—— e
e

But the method still fails in the stochastic case. Therefore, we allow the

~a.l

leader to have access to the follower's past control, the problem then reduces

-

to the same framework as before.
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3.4.2. Decentralized RSP

We approach RSP under information structure (d) in the same manner
as in section 3.2. However, now the team solution is not as easily obtainable
as in the previous case. It is known that the general team solution under the
decentralized information pattern is in general non-linear, and, in fact, the
problem is not always analytically solvable ([15], [16]). The difficulty lies
in the dual role of the control variables, namely, control and estimation.
Specifically, if the projection approach used in section 3.2 is used here, the
projections of the state variables onto the observation space cannot be evalu-
ated since the distribution of the states are affected by the past controls
which in turn depend on the projection of the states. Therefore, here we con-
strain the strategies to be linear in observation. The optimization of
leader's performance is carried out under this constraint by using the para-
meter optimization technique (the discrete-time and finite-horizon equivalent
of the continuous time approach in [17]). The leader then tries to enforce
this solution. Once linearity is assumed, sufficient conditions for RSP solu-
tions can be derived in the same way as in section 3.2, but, as expected, these
conditions are more stringent than the centralized, deterministic counterparts.

Team Solution Under Linear Representation Constraint

In this section, we use the parameter optimization technique to obtain
the best linear solution for the leader's team problem. The decentralized out-

puts are assumed to be linear functions of the past states, i.e.,
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n x Yi
R v, ®=Z% ¢, mx@ €I (3.51)
i i}
j=0
o
> is the observation vector for player i at stage k. The states may be noise-
_-, corrupted.
Convert the observations to static form in the usual way.
o Y, = C.X (3.52)
where C; is a block lower triangular matrix.
The objective is to solve
o min J, = E XQ X ‘Ry U, + Uy RyU, ) 3.53
nJy Q) X +1U) RyyUy +Up Ryl (3.53)
such that
i Ui = GiYi i=1,2
B G, is a block lower triangular matrix.
— The following proposition states the sufficient conditions for the above
problem.
"
o Proposition 3.6
i If there exists a unique quadruplet (G;, G,, P, A) satisfying
- ‘ ‘
h - - - - - :
; (1 Hl Gl Cl H2G2C2) P (I chlcl uzczcz) D o D (3.54)
] "" ‘" 2
- @ + €y 6) R)361Cy + €y Gy RypGoCy)
L 0
! T + (I-H,G,C; - HyG,C,) (I-8;64C; - HyG,Ch) = 0 (3.55)
d
b
P ] ‘
< - - - A -
E o ut, L CP (C, 6 Ry, = (I-H,6,C; - H,G,C,) A H,)) 1= 0 (3.56)
f
.
: s
C
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: ' r'd '}
ut, { C,P (C, G, Ry, = (I-H;G,C; - H,G,C,) Ay } = o0 (3.57)

dimension Yi X Mi )

4
A >
Ry, + 8 B~0

+a1‘AH >0

Rl 1

PO

(vhere £ = E [xoxo'])

then

solve the problem (3.33)

Proof: See Appendix II.

(ut, () 4 block upper triangular portion of the matrix with block

(3.58)

(3.59)

(3. 60)

(3.61)

(3.62)

Q-E.D-

Conditions for Enforcing the Team Solution

We now derive the sufficient conditions for the leader to enforce

applicable here.

Theorem 3.7

Let Z, = LY,(0),--, ¥,(k)]

his best linear decentralized team solution. The development is similar to

the centralized case, in fact, some of the previous results are directly
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Assume

II @)Y (z,) is a causal, differentiable, class-T function
(ii) J2 ('Y(Zl): uz) is convex over the convex set U2 = {“J uz(k) measurable
with respect to {yz o, ..., Y, (k)}}

di1) EF 3

F solves

[ Ry, G, Cy +HyQy) + F'(Rz1 G, ¢, + HI'QZ)] (I-H, G, C

-1
1" Hz G2 Cz) D=0

CaE

and

F=y¢ Y(yl)l c, (8 F+H,)

¥,
1 t
then =y
- vy " Y(Zl) will force u, to play u;
-~ proof:
Y
- Assumptions (i), (i1) guarantee that the minimization of J2 ( Y(Zl),uz)
) R - t t
l! results in u, *u,, then (“1’ u2) is a global minimum of JZ { Y(zl),uz),
. Therefore, it suffices to show that PZ[Vu J2]| = 0 implies condition (iii).
R 2
¢ 4
= P, lv Bl =P@, X)QUX+ (@, Y) Ry ¥ +R,, u] (3.65)
“d 2 2 2
12 Vﬁz X = H, + El Y Y (3.66)
" vV ¥=v Y@ v, ¥
.:: uz yl 1 uz 1
i - \7),1 v (yy) ¢ (B, +H Y, V) (3.67)
!
(3.65) becomes
B o ’ ¢ . ’
P (-\7‘12 (7)) (B Q, X +Ry, ¥ (7)))+ H, Q) X +Ryy u)] =0 (3.68)
&
i When u, = G2 Yo G2 C2 X
o Y(&)) =6 C X
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(3.68) becomes
' ' ' £t} o
P {[(vuz Y(y,)) | (H}Q, + Ry16,C;) + ByQ, + Ry,G,C,l X } =0
t

X = (I-H -HGC)-IDX

IGICI 222 o
It is sufficient that

-1
] [ ] J - - =
[(VuZY(yl)) \ (11102 + R21G101) + H2Q2 + R22G2C2] ¢ H1G1C1 H2C2) D=0

L.t (3.69)
Y, = ¥q

Let Vqu(yl) | =F

4 yi
Substitute in (3.67) and (3.69), result follows.
It is seen that the result is almost identical to that of the full state
information case Therefore, all the qualitative discussion pertaining to
that case carries over here. The specialization to linear strategy is straight
forward, therefore is omitted here.
3.43 st.chastic RSP:

As mentioned in the introduction, stochastic RSP with state infor-
mation only is not solvable due to the randomness of the team trajectory.
The only information structure that can be shown solvable under the stochastic
setting is the one including the perfect knowledge of follower's action. This

assumption exactly bypasses the difficulty since u, is known and can be used

2

to check against ut Once this assumption is made, the derivation becomes

2l
almost identical as in section 3.2.

For LQ setting given state information, the separation theorem
holds, therefore, the team optimal solutions are as in (3.9)
u, = G1 X
where Gi is block diagonal.
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e We can then immediately state the sufficient conditionms.
E Theorem 3.8
Given information structure (e)
: Assume
= 1) (Zl) is a causal, differentiable, class-T function
R (i) J2 Cy(zl), uz) is convex over the convex set U2 - {uz\ u, (k) measurable
with respect to { X (0), . . . , X(k)}
_ (1ii) &2
A ' ' HG - -1 -
s [F'(®Q, +R,,G)) + (H)Q, +R,,G,)] (I-H;G - H)G,) " [D I] =0 (3.70)
1iﬁ Ei and
- 1 2
A i v, wpl @ +m B+ Dy, ul - F (3.71)
S, 2
Then
u, Y (Zl) will force u, to adopt ug

Proof:

Using the proof of Theorem 3.2, we get

Py ) t
[, Y& u)l ) (H] Q) + Ry 6)) + (H)Q, +R,yyG))] X = 0

2 u bl ut
- 2 "%
o X =%t
:;: R t t t
5 " = b x +HG X +uG, 5+
F; xt = @-H,6 - £G6) YD 1] X
O 161 - K6, o
i W
; E It is sufficient that
Ty ' -1 -
) [(v“2 Y (X, u2)| ) :(HIQZ + Ry G,) + (HyQ, +Ry,G,)] (I-H;G,-R,G,) " "[D 1] =0
= up = U, (3.72)
X = xt
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Now

Vu Y (X, uz) satisfies (from (3.21))

2
(1) (2) .
vl Y (X u)l @, + 17, Y & ) ) Ty Y () l 7, Y & 0 |
X =x X =x x-x"u2 X =x°
- t - t u, = u u, = ut
i Y T 2~ %2 2 - Y2
- let F = Vu Yy (X, uz)l » we have the stated result
oo 2
S X =x
TR u, = ut
PO 2 2
N ©
. ii In (3.70), we have E_iﬂii_ll m xm, unknowns in F (F is causal),
L 4n

I' and N (2n x mz) equations. Then if N > o 1, F is generically solvable.
1

The stochastic RSP is still an open problem. Even though we know

ii &E that under the state information solution, solution does not exist. It will
. be of a great deal of interest to see how near-optimal is the parameter

} g% optimization approach. The near-optimality of some intuitive method, such

?2 X as the use of best team state trajectory estimate or just the plain certainty

equivalence, should also be investigated.
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4. CONCLUSION

In this report, we have studied the application of dynmamic-to-static
conversion technique to the Restricted Stackelberg Problem. RSP is a
restricted version of the Stackelberg equilibrium solution concept. It is
an important modeling tool for the economic systems and large scale engineering
systems.

The definitions of the team, Stackelberg, and restricted Stackelberg
problems are first stated. We then give the precise statement of the problem
under consideration and introduce the conversion technique which is the
backbone of this analysis. The past work and results are briefly summarized
and the contributions of this report and pointed out to close off Chapter 2.

The main results and discussions are presented in Chapter 3. RSP
under five different information structures is considered. Three of the
information structures are centralized, deterministic, the others are
deterministic decentralized and stochastic. The deterministic centralized
information patterns illustrate how RSP is approached and perﬁits the
examination of various qualitative aspects of its solution. They also show
how the restriction on the information structure affects the solvability of
RSP. The decentralized information pattern encounters a particular difficulty
with regard to RSP, viz.,, in the solution of the corresponding team problem.
Since the team solution is difficult to obtain in general, we settle for
a suboptimal result, the best linear team solution. The sufficient conditions

for the leader to enforce this solution are then derived. The stochastic

information patterns create another difficulty in RSP, the inability to
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formulate the threat in the presence of random noise. This problem is
bypassed by assuming the follower's past controls to be available to the
leader.

The centralized cases are studied in detail. Sufficient conditions
for RSP sclutions are derived and how they are affected by the information
structure of the leader is discussed. We then examine the stationarity and
the convexity conditions for the general nonlinear representation of the
leader's strategy to ensure that the team solution is indeed also the follower's
optimal operating point. The result restricted to linear representations of
the leader's strategy is then presented, motivated by the observation that
nonlinearity does not add any significant advantage and poses difficulty in
the convexity condition. An example is also presented to verify the derived
results.

Noting that the sufficient conditions are not always satisfied, a
natural query arises: in the case the stated conditions fail to be satisfied,
can the leader attain a cost arbitrarily close to the team cost by choosing
a threat as large as he desires (but finite)? To address this question it
is found that if the threat is infinite, RSP is solved (under some mild
conditions). However, if the threat is large but finite (no matter how large),
in general there is always an offset, bounded away from zero, in his cost from
the team cost. It should be noted that this assertion is not true if
discontinuous strategies are allowed. This result, though reduces the hope
of a continuous, guaranteed near optimal solution, does offer a design
alternative if the offset is not very large. An example is also presented

to verify the above result.
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Strictly speaking, the general decentralized RSP is not solved. The
problem lies in the fact that the corresponding team solution is not solved

in general. However, if the structure of strategies is restricted to linear,
then, by using parameter optimization, the team problem can be solved. RSP is
solved the same way as the centralized case once the linearity assumption is
adopted. The stochastic case with state information is not solved (and seems
unsolvable in its full generality) due to the lack of redundant information to
implement the threat (the state trajectory corresponds to a sample path of

a random process). To bypass the problem, we allow the leader to have access
to the follower's past controls. The problem then reduces to the deterministic
case. The stochastic decentralized RSP with the leader having the follower's
past. controls, though not presented, can be tackled in the same manner as the
combination of the above two problems. However, the linear representation
constraint again has to be used. Suboptimal results may be obtained via
parameter optimization, but are not pursued in this report.

The static conversion has proved invaluable in simplifying the
conditions and the analysis of RSP. There certainly remain a great deal of
open questions, even for this special type of problem. The suboptimal
strategies need to be investigated in the deterministic case when the derived
conditions are not satisfied, and in the stochastic case when the information
is restricted to the past states only. The hierarchical result also needs
to be developed (it will be an easy extension of the results stated here)
because of the unique feature of RSP that the follower is under no protection
from the leader's manipulation. The conditions for RSP solutions should be
interpreted from a qualitative, perhaps geomet.ic, point of view. Specific
applications should also be investigated to demonstrate that RSP is not merely

a theoretical pastime but has definite practical value.
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APPENDIX I

PROOF OF PROPOSITION 3.1
We prove it by induction
At stage N-1, calculate ui(N-l) in terms of x(N-1)
_1 '
ui(N-l) -Rli(N-l)Bi(N-l)Ql(N)x(N)

- -RIi(N—l)Bi(N—l)Ql(N)(A(N-l)x(N-l)+-Bl(N-1)u1(N-l)

+B, (N-1)u, (N-1))
(1) (1) (1)
T-dg 1, wB (-1 —dg g xB (-1 | u, (N-1) -1,8
- AQ-1)x(N-1) .
(2) (2) (2)
“dn-1, ¥R D Tmdg) B (D [l (-1 | [ dy n

By assumption,

uy (N-1) g8, (¥-1)
= A(N-1)x(N-1).

Assume similar procedure can be carried out to obtain

u, (1) = g, (D= for j=k+l,...,N-1.
Then,
x(1) = 7 (AGD) +B, (1)g, (1) 4B, (D)8, (1))x(c+D))
i=k+1 1 2772

N ' '
5,00 = <L KH(03](08" (11,000 (X

N .1 ' ' -1
= [ - R,;(k)B _(k)® (2-1,k 2 A(d
[ <F R 0B1G00" (-LQy () T (AW

+B, (118, (1) +B, (1) 8, (1)) Ix(k+1)

- déi) x(kc+1) .

s+l




We can now apply the same reduction as stage N-1, and the result follows

Q.E.D.

by induction.
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APPENDIX II

PROOF OF PROPOSITION 3.6

Substitute ui-GiYi into (3.53)

- ' Tt Tt
Jy = E{x'(Q) +C1GR;,6,Cy + CyG,R; ,G,C,)x}

= te? that ]
tr{(Qli-clclnllclcl4-czcznlzczcz)E[x x']}.

Substitute ui=-GiYi into the state equation, then

(I-H -H,G CZ)x = on.

1%1617H,6,
Therefore,

(1-H -H,.G CZ)E[x x'](I-H

L - 2 L
1Glc1 2%, -H.G.C.) DE[xoxo]D

161€178,6,C,
where
DE[x x']D' = Dz D'
o0 [o]
is assumed known.

Let P=E[x x'] and use matrix Lagrange multiplier, we have

converted the problem to one that chooses Gl’ G2, P, A to minimize

- | | fat
L(G,,6,,P,A) = tr[(Q +C,GR,,6,C; +C,G,R,,G,Cy)P
+ A((I-8,G, C,-H,G,C,)P(I-H,G, C, ~H,G,C,) "-DZ D")].

Set

4 6. ,6,,B,A+eah)| . =0 vare g (M (+n

de V172" e=0
we get

) )

(1-8,6,C,-H,G,C,)P(I-H,G,C,-H,G,C,) = DI D'.
Set

daL - (N+1)nx(N+1)n

dc (61:6,,P+eaP,A)| o = 0 VAo ER

..........

(3.54)
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\;5?%;

we get
Tt 1t - - ] - R =
(Q1+ °1G1R11°1°1+°2G2R1262Cz) + (1 H,G,C, “szCz) ACT H,6,C, H,6,C,) =0
(3.55)
Set iL Nm, xNr,
3 (6 +e46,,6,,2,1) | g =0 VAG, € lower block triangular R
€ matrices with each block of
dimension m_ xr
1771
;.* ot _ _ - [} =
1 cr{clp(clclnu (1 H,G,C, “2czcz) AHlAGI} 0.
i Let . ' kyq oeee Koy
K = C)P(C)G Ry, - (I-H;G,C,-H,6,C)) ~ Hy =/ - :
where kij = rlxml block
AGll' 0
AGl = : - . .
AGNl LB BN BN BN BN ) AGNN
AGij -mlxrl block
& 464y Cn-1,N-1
A = erKAG = [kyy woe Byl f 2 b oot Ty g g g¥ner,nd * ey
2 B 81 Sy, N-1
RI | m xr
CA =0 vac,,er b 1
:' - 1]
b
Y: e [k k.l =0
N 11 1N
TC
* -
N ﬁ lhgoy,N-1%n-1,8] = ©

[kl = O-
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Or,
utl[K] = 0,

Similarly for Gz, we have

Yt ' -
ut2 [C2P(C2G2R12 - (I-HlGlcl-HZGZCZ) AHZ] 0.

For second order sufficiency conditions, we need

2
d
7 L(G; +€46,G,,P,0)|__. > 0

de

2
d
de? L(G},6,+eaG,,P,0) | __ > 0

we need

. ' ' '
. tr(CiPCi)(AGi(R11+H1AHi)AGi) >0 i=1,2,

Sufficient conditions are
P>20 VAGie lower block triangular

\i
R11+HiAH1 >0 i=1,2.

----------------
P e T T e T T e T T LT T e T

Q.E.D.
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